当前位置:u赢电竞手机版 > u赢电竞竞猜app > 别人家的面试题:统计“1”的个数u赢电竞竞猜

别人家的面试题:统计“1”的个数u赢电竞竞猜

文章作者:u赢电竞竞猜app 上传时间:2019-10-09

打赏支持我写出更多好文章,谢谢!

任选一种支付方式

u赢电竞竞猜app 1 u赢电竞竞猜app 2

1 赞 7 收藏 2 评论

解题思路

这道题咋一看还挺简单的,无非是:

  • 实现一个方法 countBit,对任意非负整数 n,计算它的二进制数中“1”的个数
  • 循环 i 从 0 到 num,求 countBit(i),将值放在数组中返回。

JavaScript中,计算 countBit 可以取巧:

function countBit(n){ return n.toString(2).replace(/0/g,"").length; }

1
2
3
function countBit(n){
    return n.toString(2).replace(/0/g,"").length;
}

上面的代码里,我们直接对 n 用 toString(2) 转成二进制表示的字符串,然后去掉其中的0,剩下的就是“1”的个数。

然后,我们写一下完整的程序:

版本1

function countBit(n){ return n.toString(2).replace(/0/g,'').length; } function countBits(nums){ var ret = []; for(var i = 0; i <= nums; i ){ ret.push(countBit(i)); } return ret; }

1
2
3
4
5
6
7
8
9
10
11
function countBit(n){
   return n.toString(2).replace(/0/g,'').length;
}
 
function countBits(nums){
   var ret = [];
   for(var i = 0; i <= nums; i ){
       ret.push(countBit(i));
   }
   return ret;
}

上面这种写法十分讨巧,好处是 countBit 利用 JavaScript 语言特性实现得十分简洁,坏处是如果将来要将它改写成其他语言的版本,就有可能懵B了,它不是很通用,而且它的性能还取决于 Number.prototype.toString(2) 和 String.prototype.replace 的实现。

所以为了追求更好的写法,我们有必要考虑一下 countBit 的通用实现法。

我们说,求一个整数的二进制表示中 “1” 的个数,最普通的当然是一个 O(logN) 的方法:

function countBit(n){ var ret = 0; while(n > 0){ ret = n & 1; n >>= 1; } return ret; }

1
2
3
4
5
6
7
8
function countBit(n){
    var ret = 0;
    while(n > 0){
        ret = n & 1;
        n >>= 1;
    }
    return ret;
}

所以我们有了版本2

这么实现也很简洁不是吗?但是这么实现是否最优?建议此处思考10秒钟再往下看。


解题思路

如果忽略“附加条件”,这题还挺简单的对吧?简直是信手拈来:

版本1

JavaScript

function isPowerOfFour(num){ while(!(num % 4)){ num /= 4; } return num === 1; }

1
2
3
4
5
6
function isPowerOfFour(num){
    while(!(num % 4)){
        num /= 4;
    }
    return num === 1;
}

版本1 好像很简单、很强大的样子,它的时间复杂度是 log4N。有同学说,还可以做一些微小的改动:

版本1.1

JavaScript

function isPowerOfFour(num){ while(!(num % 4)){ num >>>= 2; } return num === 1; }

1
2
3
4
5
6
function isPowerOfFour(num){
    while(!(num % 4)){
      num >>>= 2;
    }
    return num === 1;
}

上面的代码用位移替代除法,在其他语言中更快,鉴于 JS 通常情况下非常坑的位运算操作,不一定速度能变快。

好了,最关键的是,不管是 版本1 还是 版本1.1 似乎都不满足我们前面提到的“附加条件”,即不使用循环和递归,或者说,我们需要寻找 O(1) 的解法。

按照惯例,大家先思考10秒钟,然后往下看 ——


打赏支持我写出更多好文章,谢谢!

任选一种支付方式

u赢电竞竞猜app 3 u赢电竞竞猜app 4

3 赞 8 收藏 5 评论

“4”的整数次幂

给定一个32位有符号整数(32 bit signed integer),写一个函数,检查这个整数是否是“4”的N次幂,这里的N是非负整数。

例如:

  • 给定 num = 16,返回 true,因为 16 = 42
  • 给定 num = 5,返回 flase

附加条件: 你能够不用循环和递归吗?

countBits 的时间复杂度

考虑 countBits, 上面的算法:

  • “版本1” 的时间复杂度是 O(N*M),M 取决于 Number.prototype.toString 和 String.prototype.replace 的复杂度。
  • “版本2” 的时间复杂度是 O(N*logN)
  • “版本3” 的时间复杂度是 O(N*M),M 是 N 的二进制数中的“1”的个数,介于 1 ~ logN 之间。

上面三个版本的 countBits 的时间复杂度都大于 O(N)。那么有没有时间复杂度 O(N) 的算法呢?

实际上,“版本3”已经为我们提示了答案,答案就在上面的那个定律里,我把那个等式再写一遍:

countBit(n & (n - 1)) === countBit(n) - 1

1
countBit(n & (n - 1)) === countBit(n) - 1

也就是说,如果我们知道了 countBit(n & (n - 1)),那么我们也就知道了 countBit(n)

而我们知道 countBit(0) 的值是 0,于是,我们可以很简单的递推:

版本4

function countBits(nums){ var ret = [0]; for(var i = 1; i <= nums; i ){ ret.push(ret[i & i - 1] 1); } return ret; }

1
2
3
4
5
6
7
function countBits(nums){
   var ret = [0];
   for(var i = 1; i <= nums; i ){
       ret.push(ret[i & i - 1] 1);
   }
   return ret;
}

原来就这么简单,你想到了吗 ╮(╯▽╰)╭

以上就是所有的内容,简单的题目思考起来很有意思吧?程序员就应该追求完美的算法,不是吗?

这是 leetcode 算法面试题系列的第一期,下一期我们讨论另外一道题,这道题也很有趣:判断一个非负整数是否是 4 的整数次方,别告诉我你用循环,想想更巧妙的办法吧~

打赏支持我写出更多好文章,谢谢!

打赏作者

关于作者:十年踪迹

u赢电竞竞猜app 5

月影,奇舞团团长,热爱前端开发,JavaScript 程序猿一枚,能写代码也能打杂卖萌说段子。 个人主页 · 我的文章 · 14 ·     

u赢电竞竞猜app 6

统计“1”的个数

给定一个非负整数 num,对于任意 i,0 ≤ i ≤ num,计算 i 的值对应的二进制数中 “1” 的个数,将这些结果返回为一个数组。

例如:

当 num = 5 时,返回值为 [0,1,1,2,1,2]。

/** * @param {number} num * @return {number[]} */ var countBits = function(num) { //在此处实现代码 };

1
2
3
4
5
6
7
/**
* @param {number} num
* @return {number[]}
*/
var countBits = function(num) {
    //在此处实现代码
};

本文由u赢电竞手机版发布于u赢电竞竞猜app,转载请注明出处:别人家的面试题:统计“1”的个数u赢电竞竞猜

关键词: javascript 基础技术